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ON THE ESTIMATION OF RELATIVE HUMIDITY PROFILES 

FROM MEDIUM RESOLUTION INFRARED SPECTRA 

OBTAINED FROM A SATELLITE 

Barney J. Conrath 

ABSTRACT 

Measurements of radiation emitted by the atmosphere of the earth in an in- 

f rared absorption band of water vapor, obtained with satellite borne instrumenta- 

tion, contain information on atmospheric relative humidity. Two methods a re  

developed for estimating tropospheric relative humidity profiles from infrared 

spectral measurements for which the spectral resolution elements a re  narrow 

compared to the total width of the absorption band, but wide compared to a single 

absorption line. The methods , which are essentially compelmentary, consist of 

a direct  estimation technique which requires a minimum of a priori  knowledge of 

the behavior of the relative humidity profile and a statistical estimation technique 

which can make full use of a knowledge of the statistics of tropospheric humidi- 

ties in situations where such knowledge exists. An analysis of the propagation 

of errors in the measured spectral intensities indicates that meaningful esti- 

mates should be obtained from the 6.3 micron water vapor band in the presence 

of realistic instrumental noise for most types of atmospheres. One exception is 

the polar winter atmosphere where catastrophic e r r o r  propagation occurs be- 

cause of the behavior of the temperature profile. An examination of the effects 
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on the inferred relative humidity profile of e r ro r s  in the temperature profile 

employed in the estimation reveals that the relative humidities inferred in the 

lowest layers of the troposphere are extremely sensitive to e r ro r s  in the surface 

temperature, and this may prove to be the limiting factor in obtaining complete 

relative humidity profiles. Examples of applications of the techniques to syn- 

thetic data from model atmospheres and to real data obtained with a balloon 

borne infrared interferometer spectrometer are given. 

vi 



ON THE ESTIMATION O F  RELATIVE HUMIDITY PROFILES 

FROM MEDIUM RESOLUTION INFRARED SPECTRA 

OBTAINED FROM A SATELLITE 

I. Introduction 

Remote radiometric measurements of the thermally emitted infrared radia- 

tion from the atmosphere and the surface of the earth, performed with satellite- 

borne instruments, contain information on a number of parameters of interest in 

atmospheric physics and meteorology. Among these parameters a re  the tem- 

perature profile and the vertical distribution of non-uniformly mixed optically 

active gases. A considerable literature exists on the problem of estimating 

temperature profiles from radiometric measurements (see Wark and Fleming, 

1966, and references therein), and the problem of obtaining the vertical distri- 

bution of non-uniformly mixed gases was treated formally by King (1963). In the 

present study, we shall be concerned with the specific problem of obtaining esti- 

mates of the vertical humidity distribution in the troposphere. 

Several in the TIROS series of meteorological satellites carried instrumen- 

tation for making measurements in the 6 to 6.5 micron water vapor absorption 

region and the 8 to 12 micron "window" in addition to other passbands. These 

measurements have been used in estimating average tropospheric relative 

humidities, employing a method developed by MGller (MGller, 1961, 1962; Mcller 

and Raschke, 1964; Raschke and Bandeen, 1967). Recently Smith (1967) has  - - 
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developed a technique for  making estimates of the water vapor mixing ratio as 

well as temperatures in the troposphere for  a proposed 5-channel radiometer 

experiment. 

Several forthcoming meteorological satellites will carry infrared inter- 

ferometer spectrometer (IRIS) experiments (cf. -7 Hanel and Chaney, 1965). The 

first of these will cover the spectrum from 5 to 20 microns with a resolution of 

5 cm-'. A spectrum obtained with an instrument of this type during a high alti- 

tude balloon flight near Palestine, Texas, on 8 May 1966 is shown in Fibrure 1. 

Included in this spectral region is the 6.3 micron water vapor absorption band. 

The possibility of having such measurements on a global basis provides motiva- 

tion for the development of the theory of the estimation of tropospheric relative 

humidity profiles from spectra for which the individual spectral resolution ele- 

ments a re  small compared to the total width of the absorption band but large 

compared to an individual absorption line. It is the purpose of the present study 

to investigate certain aspects of that theory. 

Jn the development of any complete invemrsion technique a large number of 

factors must be taken into consideration. Here we shall confine ourselves to the 

development of basic approaches to the problem. The general principles of con- 

stituent inversion will be considered, and a direct estimation method will then 

be developed and used to study the sensitivity of the relative humidity estimates 

to e r ro r s  in both the intensity measurements and in the temperature profile used 

2 



in the inversion. A statistical estimation method will then be examined. Ex- 

amples of applications to synthetic data calculated from model atmospheres and 

real data from an IRIS balloon flight will be given. The effects produced by the 

possible presence of particulate matter will not be included in the scope of this 

study. 

TI. Basic Principles 

For a nonscattering atmosphere in local thermodynamic equilibrium the 

spectral intensity at the top of the atmospher13 can be written from the solution 

to the radiative transfer equation in the form 

where €3 ( 7 , T )  is the Planck function at wavenumber L/ and temperature T, X is 

an arbitrary independent variable taken as increasing downward toward the 
3 

surface, and 7 ( V, X) is the transmissivity at wavenumber I /  of the column of gas 

between levelX and the top of the atmosphere. The subscript s refers to  s u r -  

face values. It is assumed in (1) that the surface has unit emissivity, so the 

contribution from the surface is given by the first term. The second term in 

(1) represents the atmospheric contribution and for a given wavenumber can be 

regarded as an average of the source function over the weighting function 

- 3 7  ( I/, X)/aX which is everywhere positive since 7 decreases with increasing X . 

3 



7 

menta of I ( u  ). I 

The principle of obtaining information on the atmospheric water vapor 

content from measurements of I (v) can be seen in the following way. Since 

T ( u, X) at any level X depends on the amount of water vapor above that level, a 

change in  the water vapor content of the atmosphere will cause a change in the 

weighting function relative to the temperature profile so a different segment of 

the  source function will be sampled, and I (v) will be changed. This effect is 

illustrated in Figure 2 where weighting functions in the 6.3 micron water vapor 

absorption band a r e  shown for two model atmospheres with the same temperature 

profile but different relative humidities. To obtain information at several dif- 

ferent atmospheric levels, measurements must be made at several points in the 

absorption band ranging from the more opaque band center to the less opaque 

band wings. Weighting functions at two different points in the 6.3 micron water 

vapor band are included in  Figure 2. The calculations employed in Figure 2 

were made using the water vapor transmissivities given by Msller - and Raschke 

(1964) and correspond to resolution elements about 40 cm- '  wide. The sampling 

of the source function by the weighting function is not very sensitive to structure 

in the humidity profile which is of a scale small compared to the characteristic 

width of the weighting functions themselves. Any attempt at retrieving this fine 

I 

r 

structure can result i n  an instability against e r r o r s  in the measured intensities 

just as occurs in the temperature inversion problem. Thus, the information 

obtainable on the humidity profile will be limited by the noise in the measure- 
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EI. Direct Estimation 

Throughout the remainder of this paper we shall utilize the transmissivities 

of M6ller - and Raschke (1964) in  all of our examples. The use of these functions 

limits us to consideration of spectral resolution elements no narrower than 

about 40 em-'. However, the techniques considered should be equally applicable 

to data of higher spectral resolution when used with appropriate transmissivities 

There are  a number of approaches which can be taken to the water vapor 

inversion problem; we shall consider two of these here. The first  of these 

might be called a direct estimation of the relative humidity profile. 

Let us assume that we have available to us  measurements of outgoing spec- 

t ra l  intensities, and call this measured spectrum I ("). Let u s  further assume 

we have available to us  the temperature profile T (X). Now if  we arbitrarily as- 

sume some representation for the relative humidity profile containing a number 

of free parameters a a*, . . . a n  and substitute this into (1) we obtain a para- 

. metric representation of the spectrum in terms: of the a's. For example, the a's 

may be constants in some analytic form o r  coefficients in an expansion in terms 

of some function set. For convenience of notation let us  denote the measured and 

eoretical intensities at the ith wave number by I I and I ,  respectively and 

d i n e  the n-dimensional vector a whose components a re  a 

'.y to evaluate a and hence get an estimate of the relative humidity profile by 

. :tting the measured intensities equal to the theoretical representation at m 

a 2 ,  . . . a n .  We can 

9oints (m 2 n ) in the absorption band; i.e., 

5 
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+ I, 

-L 

I i ( a )  = I 1 ;  i = 1, 2, . . . m  

Since in the practical situation we can extract only a few independent pieces of 

information with many of the measured intensities being redundant to within the 

experimental e r ror ,  we will generally have many more measurements than 

parameters to be determined in experiments such as the IRIS. Hence ( 2 )  will be 

an overdetermined generally nonlinear system of algebraic equations. 

A number of techniques exist for evaluating such a system of equations. 

The method which we have chosen is a generalization of the Newton-Raphson 

method. A Taylor expansion is made about some first guess, say a O ,  and 

truncated after the linear term. This gives 

where 

and 

A a  ~ a - - a o  
1 1 J 

An ordinary least-squares solution can now be obtained for  Aa from the over- 

determined linear system (3) which can be expressed in the well known matrix 

form 

~a (A*A)-'  A *  AI 

6 



10 

where 

A i j  z ( a I i / a a j ) ,  0 , a  

and A* is the matrix transpose of A. The corrections A a  can be used to obtain 

what is hopefully an improved approximation to a which can be used as a new 

first guess and the process iterated until some convergence criterion is satis- 

fied, assuming convergence is obtained. 

The above procedure is equivalent to making a least-squares fit of I ( v ;  a )  

to the measured spectrum I (v). This does not imply that the resulting estimate 

for the relative humidity profile is necessarily a best fit to the true profile in a 

least-squares sense. One would prefer to have a technique which provides a 

least-squares f i t  to the true relativehumidity profile, but of course this cannot 

be done directly since the true profile is unknown. However, it can be done in  a 

statistical sense, and this approach will be considered in the following section. 

The estimates obtained with this technique will generally depend on the 

representation assumed. There will be two types of e r ro r s  involved, one of 

which is that due to the inability of the represeptation chosen t o  fit the profile 

exactly even for perfect measurements. The other type of e r ro r  is due to 

e r r o r s  in the inferred values of the parameters of the representation, resulting 

I 

from er rors  in the measured values of the spectral intensities. In order to 

make the representation e r r o r  as small as possible, a priori knowledge of the 

7 
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humidity profiles can be used to make a reasonable choice of representation. 

One particular class of representations is that in which the relative humidity 

profile r (X) depends on the parameters in a linear fashion, i.e., 

where the q ’ s  are  arbitrary functions of X which might be members of some 

orthogonal function se t  o r  might be chosen such that r (X) is expressed in terms 

of step functions o r  ramps. We shall consider examples using the form (5), but 

such a restriction is not a necessary one. 

The transmissivities which we are  employing for our examples can be 

written (MGller and Raschke, 1964) -- 

1.97 tV u*(X) 
7 ( v , X )  7 exp f [l t6.57 

* where 

is the reduced absorber mass 

is the generalized absorption coefficient at wave number I / ,  and u 

with T o  and P, referring to standard temperature and pressure.  The temperature 

factor L’To /r has been neglected in the present study. It has been found con- 

venient to choose the ~ndependent variable x :1s the atmospheric pressure p for  

- 
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the present application. U s e  of the form of the transmissivity given by ( 6 )  al- 

lows us  to express in a rather simple form the quantities ?I / _ a  ~ required for  

each step of the Newton-Raphson calculation. It is convenient to s tar t  with the 

integration by parts form of (1) 

I i  = B,(O) t .JP) dP 

where the subscript i denotes values f o r  the ith spectral resolution element in 

the absorption band. Making use of the well known approximate relationship 

between specific humidity and relative humidity 

e s  w (g /kg)  2 6 2 2  - r 
P 

and relation (7), along with the expression for the absorber mass 

we obtain from (8) 

where 

9 
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The gravitational acceleration is represented by g ,  and e is the saturation 

vapor pressure which is a function of temperature only. The factor 3- ' 3u 

occurring in the integrand in (11) is to be evaluated at each iterative step using 

the value of the relative humidity profile estimated in the previous step. 

* 

In order for such a computational scheme to be of value, the region of con- 

vergence must be sufficiently large to allow one to make a reasonable first 

guess. It appears that the question of convergence can best be examined 

empirically. To obtain some feeling for the behavior of this method of estima- 

tion, synthetic data were calculated and inversions performed for a number of 

model atmospheres. 

Application to a rather wet mid-latitude model is shown in Figure 3. A 

3-parameter representation consisting of two ramps linear in pressure with the 

break point at the 500 mb level was employed. Synthetic data for nine 40 cm 

wide spectral resolution elements between 1200 cm-' and 1520 cm-' were used 

with a "first guess" of a completely saturated atmosphere with 100% relative 

humidity at all levels. Convergence to the solution shown was obtained in about 

six iterations. For most model atmospheres tried, the a's were found to change 

less than 1% after f ive o r  six iterations. In practice, one could probably make 

better first guesses than t h e  crude one used here. 

1 

An inversion of synthetic data from a tropical model is shown in Figure 4. 

Once again a 3-parameter 2-ramp representation with the break point at 500 mb 

10 
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was employed. Because of the higher atmospheric opacity due to the larger  

amount of water vapor present, it was necessary to go further into the band wing 

in order to insure some sensitivity to the lower-most layers of the troposphere. 

Ten spectral resolution elements between 1160 cm- '  and 1520 cm 

employed. 

-1 
were 

One very important aspect of any inversion technique is the stability of the 

estimation against random e r ro r s  in the measured intensities. The root-mean- 

square fluctuation in the estimated values of the parameters u a  due to the 

presence of a given rms  e r ro r  in  the intensities aI can be approximated for 

small  e r ro r s  by 

The factors aa /a1 

(A*A ) - l  A* of (4) which a re  required in the inversion. If the aI 

for all spectral resolution elements we can define an e r ro r  amplification factor 

required in  (13) are just the elements of the matrix 

are the same 
1 

I I 

such that 

K .  = 

In the two ramp representation used in the exampIzs above, the three parameters 

Solved for were the relative humidities at the 100  mb, 500 mb, and 1000 mb levels. 

I 

I 
I 

I 

I 
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The er ror  amplification factors corresponding to these three parameters for the 

mid-latitude and tropical models used above are given in  Table I. 

Table I 

Er ror  Amplification Factors K~ (erg cm-2 sec-' s te r  -' cm)- '  

Parameter 

100 m b  

l-1000 mb 

r100-575 m b  

r575-1000 mb 

2 -Layer 

Model Atmosphere 

Mid- Latitude 

0.376 

0.231 

0.603 

Tropic a1 

0.334 

0.237 

0.730 

Polar 

- 

- 

- 

0.102 

1.246 

The er ror  which is due to the representation alone will be dependent on how 

well the assumed form can be made to fit a given profile, so will vary from case 

to case. Some idea of typical e r ro r s  of representation can be gotten from 

Figures 3 and 4. The IRIS experiment j3rovides an example of the random e r r o r  

in  the measurement of the spectral intensities which might he expected in the 

practical situation. The rms e r r o r  expected in that experiment is about 0.5 

erg 

ties employed in  the examples above, the IRIS data would have to be averaged over 

about eight 5 cm wide resolution elements, so  the resulting effective rms  

e r r o r  would be about 0.2 erg cm-* sec- '  s t e r - '  cm. The effects of such an 

- 1  sec s t e r - '  cm. In order to meet the constraints of the transmissivi- 

- 1  

e r r o r  on the three parameters of the inversion a re  shown by the e r r o r  bars  i n  

12 
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Figure 4. In this particular case the e r ror  due to noise in the measurements 

is about the same size as the representation e r ror .  

Figure 5 shows an inversion of synthetic data for a polar winter model 

atmosphere which is probably a worst case for inferring relative humidities. 

The representation used in this case was a step function consisting of two layers 

of constant relative humidity divided at the 575 mb level. Once again the e r r o r  

bars  indicate the effects of a 0.2 erg 

measured intensities. It can be seen that the inferred relative humidity for the 

bottom layer is quite unstable against e r rors  in the measurements. This is 

primarily due to the behavior of the temperature profile which is also shown 

in the figure. The average temperature in the bottom layer is very near the 

surface temperature so that layer looks very much like an extension of the 

blackbody surface and the outgoing intensities a re  highly insensitive to the 

actual value of the relative humidity in the layer. 

sec- '  s te r  -' cm random e r r o r  in the 

A quantity of considerable interest which can be calculated from the relative 

humidity profile along with the temperature profile is the total water vapor in  

an atmospheric column. The inferred total water vapor using exact intensities 

is compared with the actual value in each of the examples shown in Figures 3 ,  

4,  and 5. The lack of complete agreement is due to the representation e r ro r s  

in the relative humidity profiles. The percentage rms  e r ro r  in the inferred total 

amount of water vapor due to rms  intensity e r ro r s  of 0.2 erg sec-'  cm - 2  -1  
ster 

13 
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cm is 12% for the mid-latitude model, 9% for the tropical model, and 41% for the 

polar winter model. 

In the examples considered, we have used representations for the relative 

humidity profile containing considerably fewer parameters than the number of 

spectral intensity measurements employed in the inversions. Attempts at using 

more complex representations containing additional parameters, lead to such 

strong propagation of instrumental e r rors  that the results would be of little 

value. The instrumental noise of 0.2 e rg  sec  

averaged over 40 cm 

parts of the 6.3 micron band. This is due primarily to the low values of the 

Planck intensities in this spectral region (see Figure 1). It is only through the 

use of a number of spectral intensities in a redundant sense such as in a least- 

squares calculation that we a r e  able to obtain inversions in the presence of such 

er rors .  

1 cm - 2  ster-' cm for intensities 

- 1  
constitutes an e r r o r  of almost 10% in the most opaque 

Up to this point we have assumed an exact knowledge of the temperature 

profile. In the practical situation, we will presumably have to rely upon temper- 

ature profiles estimated from spectral measurements in the 1 5  micron carbon 

dioxide absorption band, for example. Since these temperature estimates will 

contain e r rors ,  it is important to investigate the effects of e r ro r s  in the temp- 

erature profile on the relative humidity estimates. 

14 

A ,  



18 

It was pointed out by Msller (1962) that the intensity at the top of the 

atmosphere for a spectral interval in a water vapor absorption band is not de- 

pendent on the temperature profile provided the following conditions are satisfied: 

(a) the relative humidity is constant at all levels to which the outgoing intensity 

is sensitive, (b) the optical thickness of the atmosphere is large enough to pre- 

vent there being a significant contribution from the surface, (c) the temperature 

lapse, rate is constant, (d) the atmospheric transmissivity from a given level to 

the top of the atmosphere depends only on the total amount of water vapor between 

that level and the top of the atmosphere. When these conditions are met, the 

same temperature will always occur at the same optical depth regardless of the 

absolute value of the temperature at any given height. Conditions (a), (c), and 

(d) will never be rigorously satisfied in  the practical situation, and (b) is not 

satisfied when we use data from the wings of the absorption band in an effort to 

get information on the lower-most layers of the troposphere. Therefore, an 

empirical investigation was made of the effects of perturbations in the tempera- 

ture  profile on the estimated relative humidities. 

Temperature perturbations of -lo K were introduced successively into the 

region between 50 mb and 300 mb, the region between 350 mb and 550 mb, the 

region between 600 mb and 950 mb, and the surface temperature for a mid- 

latitude model atmosphere , and a relative humidity inversion was performed for 

each case as well as the case of the exact temperature profile. The perturbations 

resulting for  the three relative humidities forming the parameters for the two 

L 

.id: , 
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ramp representation a re  given in Table KI. The effect on estimations of the total 

water vapor amount is also indicated. It can be seen that the relative humidity 

estimates a re  not particularly sensitive to small e r rors  in  the atmospheric 

temperature, but are  quite sensitive to error8 in the surface temperature. The 

reason for this extreme sensitivity is that in using the spectral region between 

1200 ern-' and 1520 cm-' rather transparent portions of the band wings have 

been included in order to obtain information on the lower-most layers of the 

troposphere. Here the boundary term in (1) is large compared to the atmospheric 

contribution so the surface temperature is the parameter to which the intensities 

a re  most sensitive. This sensitivity can be reduced by not using the intensities 

a s  far out Into the band wings; however, this will reduce the information gained 

on the humidity in the lower part of the troposphere. It should be noted that 

while reasonable estimates of relative humidity might be made when there a re  

e r ro r s  in the estimated atmospheric temperatures, the resulting estimates of the 

absolute humidity may contain large e r ro r s  due to the strong sensitivity of the 

saturation vapor pressure to the temperature. 

If the temperature profile used in estimating the relative humidity profile 

must come from an inversion in  the 15 micron carbon dioxide absorption band, 

there is an additional complication due to the finite water vapor absorption in 

this region as  well as the "window" region near 11 microns from which the s u r -  

face temperature must be obtained. Thus, the water vapor and temperature 

16  
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inversions a re  essentially coupled. One approach to this problem is an overall 

iterative scheme which takes advantage of the relatively weak dependence of the 

window and 15 micron band intensities on the humidity profile. A first guess at 

the relative humidity profile is made and the surface temperature and atmospheric 

temperature profile a r e  estimated from the window and 15 micron reglons. These 

temperatures a re  then used along with measured intensities in the water vapor 

band to obtain an improved relative humidity profile. The process is then 

iterated until convergence is obtained. An example of such a calculation on syn- 

thetic data from the mid-latitude model used above is shown in Figure 6. Five 

iterations were required to obtain the solution shown. The representation as- 

sumed for the temperature profile consisted of two ramps linear in the logarithm 

of the pressure with the break points chosen at the 200 mb and the 800 mb levels 

and the temperature above 200 mb assumed constant. 

A s  a final example of a direct estimation of relative humidity, an inversion 

of actual IRIS data was performed. The data were obtained during a high altitude 

balloon flight 8 May 1966 near Palestine, Texas (Chaney, et al., 1967). The re- 

sults are shown in Figure 7. 

I V . St at i s ti c a1 Est i m :%ti on 

Up to th is  point we have used the a priori information available on humidi- 

ties in the troposphere only as a guide in picking reasonable representations for 

approximating the relative humidity profile. For those geographic regions for 

18 



which a large amount of information 

make better use of this information. 

22 

is available, i t  would seem desirable to 

One possible approach would be to employ 

as the function set  in expansion ( 5 )  empirical orthogonal functions (Obukhov, 

1960; HolmstrGm, 1963) constructed from radiosonde data collected in the past 

at the station in question. This method has been applied to the temperature 

inversion problem (Alishouse -- et al, 1967; Wark -- and Flemming, 1966). Another 

approach is to attempt to devise a regression relation between the measured 

intensities and the relative humidity at each level. This method will be investi- 

gated here. 

A s  mentioned earlier,  the least squares fitting of the measured spectrum 

does not in general imply a least squares fit of the representation for the 

relative humidity profile to the true relative humidity profile. We can, how- 

ever attempt to minimize the mean square deviation of the estimated profile 

from the true profile in a statistical sense. A formulation of this type has 

been given for general linear systems by Foster (1961) and for the tem- 

perature inversion problem by Rodgers (1966) and by Strand and 

Westwater (1968). The procedure below follows the general derivation 

given by these authors. 

-- 

Let u s  consider an ensemble consisting of q measurements of the m- 

component intensity vector I and the corresponding n-component relative 

humidity vector r . Define the m by q matrix 9 such that each column corresponds 
- n, 
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to a member of the ensemble of intensity measurements from which the ensemble 

mean has been subtracted. Similarly, let 

correspond to the measured relative humidity profiles minus the ensemble 

mean. Now define a linear estimate 

the form 

be an n by q matrix whose columns 

to the true relative humidity profiles of 

where H is an n by m matrix of coefficients to be determined. Even though the 

relationship between relative humidities and spectral intensities is generally 

nonlinear, the assumed linear form should give reasonable results at least in the 

vicinity of the ensemble mean. If it is found necessary, higher order terms can 

be added to (16). 

The elements of H can be determined by requiring that the mean square 

from the t rue profiles p be a minimum deviation of the estimated profiles 

which is equivalent to requiring that the diagonal elements of the matrix 

(17) 
1 
q 

Q = - ( P  - P> (11 - /.)* 

be minimized. This results in  

H: CR-' 

where C is the n by m cross-covariance matrix 
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and R is the n by n covariance matrix of the measured intensities 

To be able to calculate C , we need to know the true relative humidity profiles i; 

when in fact all we have available a re  the measured values which will gen- 

erally contain e r ro r s  

? 

where rl is the matrix 

cu 
P ' P t r l  

of e r ro r s  associated with 

(21) 

the measurements. If the e r ro r s  

a re  random with zero ensemble mean, then p can simply be replaced with 

(19). 

in 

Since it does not appear to be practical to assemble the necessary ensemble 

of both intensity measurements and corresponding relative humidity measure- 

ments, we must rely on the measured relative humidity profiles alone and use 

radiative transfer theory and an a priori knowledge of the instrumental noise in 

the spectral measurements to  obtain C and R. Let us assume the measured 

intensities 8, can be represented by 
-L 

where 4 is the matrix of true intensities, and 6 represents the matrix of instru- 

mental noise, assumed to have zero mean and to be uncorrelated with the 

measured relative humidities. The calculation can be simplified by expanding 

the theoretical relationship between the intensities and the relative humidity 

profile about the ensemble mean and truncating after the linear term,  i.e., 
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(23) 

where P is the rn by n Jacobian matrix whose elements a re  of the form ’ ? I l / a r ,  

and are evaluated using the ensemble mean relative humidity profile. This ap- 

proximation is consistant with (16) and allows us to write C and R explicitly in 

terms of the covariance matrix of the true relative humidity profiles. In cal- 

culating the t rue values of c!i required in (22),  we need the true values of / J  , but 

again we have available only the ensemble of measurements ;. By utilizing (21) 

and the previous assumptions on q ,  along with the additional assumption that T 

and E are  uncorrelated, we obtain 

where N is the covariance matrix of the instrumental noise 

and s is the covariance matrix of the true relative humidity profiles 

Thus, i f  the covariance matrix l /q  vq* is known, the effect of the random e r r o r s  

in the measured relative humidity profiles p can be taken into consideration in 

the computation of S .  

We can now use H in the estimation of a relative humidity profile f rom 
,7.~ 

actual intensity measurements I ,  providing the ensemble used in calculating S 

is representative of the conditions to which the intensity measurements pertain. 
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The estimated relative humidity profile is then given by 

where (r) denotes the ensemble mean relative humidity profile, which is used 

along with the temperature profile in the computation of P and I (  (r) ). The 

residual variances Q i i  a re  given by the diagonal elements of the residual co- 

variance matrix (17) evaluated using (16) and (24), 

QI" S - SP* (PSP" t N ) - l  PS 

I 

A s  the previous authors have pointed out, the inversion is stable against instru- 

mental noise in the sense that Qii +Sii as N -a . 

In order to obtain some feeling for the behavior of such an estimation scheme, 

we have employed an ensemble of twenty-five humidity profiles based on radio- 

sonde data taken at Guam Island during the mocths of July and August over a 

three year period. The covariance matrix for the relative humidities was cal- 

culated, and the ensemble mean profile along with the standard deviation for each 

level ( = J S , , )  is shown in  Figure 8. In many situations, the noise covariance 

matrix will reduce to a single noise variance 0; times the unit matrix. The 

residual standard deviation v ' c  at each levtd is shown in Figure 8 for the case 

where 0" = 0.2 erg cm-* sec 

the variance is reduced in this particular case by the spectral data over that 

for  the a priori statistics alone. 

- 

- 1  
ster-' cm, demonstrating the amount by which 
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Figure 9 shows the results of an estimation using synthetic data from a 

model atmosphere which employed as a relative humidity profile a member of 

the original ensemble which lies fairly close to the ensemble mean profile. The 

fit in  terms of both the relative humidity profile and the total water vapor amount 

is quite satisfactory. A similar inversion on synthetic data is shown in Figure 

10. In this case the model atmosphere is based on a member of the ensemble 

which differs considerably from the ensemble mean. The fit is not quite as 

good as in the previous case, especially above the 500 mb level; this i s  partly 

due to the assumption of the linear relationship (16) which becomes increasingly 

poor the further the sounding is from the ensemble mean. 

To obtain some feeling for the dependence of the results of an estimation on 

the type of ensemble employed relative to the type of profile sought, the covari- 

ance matrix and ensemble mean for the tropical ensemble were used to perform 

an inversion on the synthetic data from the mid-latitude model considered pre- 

viously. The results a r e  shown in Figure 11. The fit is not as good as in the 

previous examples , presumably because the sounding is atypical with reference 

to the ensemble used. 

V. Summary and Discussion 

Two possible approaches to the problem of estimating tropospheric relative 

humidity profiles from medium resolution infrared spectra obtainable f rom an 

earth satellite have been developed. The direct estimation technique should be 

applicable in those situations for which little a priori  knowledge of the behavior 
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of the humidity profile i s  available. For applications to regions for which a 

considerable amount of information exists on the statistical behavior of the rela- 

tive humidity profile, it is highly desirable to take this information into consider- 

ation in performing inversions. The statistical estimation technique which has 

been described here provides one means of accomplishing this. Hence, the two 

methods a re  essentially complementary. 

Calculations using both model atmospheres and actual data from a balloon 

borne infrared interferometer spectrometer experiment indicate reasonably 

stable inversions can be obtained using the direct estimation technique with a 

three parameter representation, in the presence of realistic instrumental noise. 

One exception is the polar winter type atmosphere for which the measured in- 

tensities a r e  insensitive to the humidities because of the behavior of the tem- 

perature profile. 

An empirical study of the influence of e r rors  in the temperature profile on 

the relative humidity estimates indicates that the relative humidity inferred is 

not extremely sensitive to e r rors  in the atmospheric temperatures. However, 

absolute quantities such as mixing ratios obtained from these relative humidities 

and temperatures will be quite sensitive to temperature e r ro r s  because of the 

strong dependence of the saturation vapor pressure on temperature. When the 

more transparent wings of the absorption baQd a r e  employed in  an effort to ob- 

tain information on lower tropospheric layers, i t  is found that the inferred 
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relative humidities are very sensitive to e r ro r s  in the surface temperature. 

This may prove to be the limiting factor in  the accuracy of estimates of complete 

relative humidity profiles. The surface temperature must be determined in 

satellite experiments from measurements in an atmospheric "window" such as 

that near 11 microns. The temperatures obtained in this way will be influenced 

by instrumental e r ro r s  and by uncertainties in the atmospheric transmissivities 

in  the window region. The window transmissivities will be dependent not only 

on water vapor, but also on the particulate matter present which will generally 

be an unknown parameter. 

The linear statistical estimation technique when applied to synthetic data 

from model atmospheres shows sufficient promise to warrant further develop- 

ment in the future. The success of the method depends strongly on having a good 

estimate for the relative humidity covariances for the location in question and 

also the covariances for the noise associated with the instrument employed. 

Further study is required to determine those geographical regions for  which the 

method might be reliably used. Other areas of future investigation include the 

possibility of obtaining an improvement by including nonlinear terms in  (16) and 

the possibility of combining measurements in the 6.3 micron band, the window 

region, and the less opaque parts of the 15 micron band to perform a combined 

statistical estimation of tropospheric temperature and water vapor. 
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This study has concentrated primarily on the 6.3 micron water vapor band 

because the first of the satellite experiments to which the work is applicable 

will include that band. However, the basic techniques developed here should be 

equally applicable to the rotation water vapor band beyond 20 microns and that 

spectral region should not be neglected in future work. The transmissivities of 

M6ller and Raschke have been used here, but other transmissivities such as 

those given by Williamson - and Houghton (1965) could be f i t  into the computational 

techniques equally well. 

There a re  a number of factors which must be taken into consideration in 

the development of methods for obtaining relative humidity profiles from satellite 

measurements on a truly global basis which have not been included within the 

scope of this study. Perhaps foremost among these is the problem of treating 

the case in which the field-of-view of the instrument is partly cloud filled. 

Smith (1967) has proposed a technique for treating this problem based on the 

availability of additional information i n  the form of spatial scans within the 

principal area for  which the inversion is to be performed. For experiments 

for which this additional information is not available, other techniques must be 

developed. Also, quantitative estimates of the effects of atmospheric turbidity 

which may be enhanced in spectral regions of strong water vapor absorption 

(Deirmendjian, 1960) a re  needed. However, the computational methods con- 

sidered here should provide a basis for utilizing the forthcoming satellite ex- 

periments to develop techniques which can eventually be incorporated into 

Operational systems. 27 
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Figure 3-Inversion of synthetic data from a mid-latitude model 
atmosphere. A 3-parameter representation consisting of two 
ramps linear in pressure was employed. 
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Figure 8-Mean relat ive humidity prof i le and standard deviat ions for a tropi- 
i ca l  ensemble. The curve marked ( 1  m i s  the standard deviat ion for the 
ensemble and that marked on .20 i s  the standard deviat ion resul t ing when 
spectral intensity measurements wi th an rms error of 0.20 erg CII-~ sec-’ 
ster- ’  cm are employed. 
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Figure 9-Statistical estimation of a relat ive humidity profi le using 
synthetic data from a model atmosphere. A member of  the ensemble 
which did not depart greatly from the ensemble mean was employed 
as the sounding. 
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Figure 10-Statistical est imation o f a  relat ive humidity p ro f i le  using 
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Figure 11-Statistical estimation of a relat ive humidity p ro f i le  using 
synthetic data from a model atmosphere. The mid-lat i tude sounding 
employed was not a member of the ensemble on which the stat ist ical  
parameters of the estimation were based. 
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